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Introduction

Intent

This report has been written as a tutorial. It does not pretend to be a reference manual neither the
only document to read. The goal is just to give an overview of useful tools and techniques one
should learn before working on projects using advanced C++ static constructs. Most common
caveats are briefly explained, so that the reader will remind them if he encounters the problem
one day.

To achieve this goal, a tutorial approach has been chosen, with several exercise to make the
reader think by himself about problems, thereby increasing his level of comprehension.

How to read this document

This document is mostly self-contained for people who already have a good knowledge of the
C++ language. Most of the material can be found in (Veldhuizen, 1999) and (Alexandrescu, 2001)
with much more details and explanations.

You should start be reading this report, play with the given code if it is not that simple for you,
working on the given exercises, looking at the solutions if you can’t find them by yourself.

After reading this document, you are highly advised to have a look at (Veldhuizen, 1999) and
(Alexandrescu, 2001). Some chapters are essential to read carefully, other are not. Most of the
important chapters (for our concern!) are referenced in the corresponding sections of this tutorial.

Note about C++ compilers

C++ code involving templates generally leads to cryptic compiler error messages. Some compil-
ers provide better messages than others, so you should try your code with other compilers if you
can’t understand the given messages.

Besides, templates are a quite recent and tricky addition to the C++ standard, so almost all
compilers still have many bugs with templates. Comparing the results with other compilers may
help you tracking down compilers bugs.

(Veldhuizen, 1999) gives a good (even if a little outdated) introduction to C++ compilers func-
tionalities. From our experience, here are the use we make of the different compilers we currently
have:

e G++ 2.95 is deprecated, we don’t use it anymore. It is too loose and suffers from many
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critical bugs, but has very good performance, both about compile-time and generated code.
His favorite error message is “Internal error.”

e G++ 3.3 is fine. The standard is more respected, compile-time and generated code are
correct. This is our default compiler.

e G++ 3.4 has a new, completely rewritten parser. Therefore, error messages are sometimes
better, but as the time of the writing this version is still experimental. The standard is much
more respected than in previous version, so it is worth compiling with G++ 3.4 is you want
to make sure that your code is standard compliant.

e Intel C++ 8 compiles generally faster than Gcec, but the generated code is often slower (on
Linux). The standard is usually respected, and error messages are fine (EDG front-end). It
is a good idea to test your code with it.

e Comeau 4.3 is the most standard compliant compiler. Thus, you should try your code with
Comeau is you have a doubt about the C++ standard, it will generally give the good answer.
The error messages are similar to ICC ones since they share the same front-end. However,
the generated code is very slow compared to other compilers.

Outline

The first chapter deals with generalities C++ templates. The goal of this chapter is to familiarize
the reader with the template possibilities, and to gives some tips and usual caveats C++ template
programmers generally encounter.

Relying of this knowledge of templates, the second chapter presents some basic metaprogram-
ming tools the reader will certainly need one day. It should also give a preview of the complicated
things we can ask the compiler to do.

Finally, the third chapter summarizes more advanced techniques, which are not necessarily
fundamental but which should be seen at least one time by every static C++ programmers.



Chapter 1

Short review of templates in C++

The goal of this chapter is to give an overview of the low level template construction and behavior
in C++. You may want to skip some sections if you have a good knowledge of templates in C++.
This chapter requires some basic knowledge of templates in C++.

1.1 The static world

In the following, the static world represent all the computations which can be performed at
compile-time. In C++, thanks to the template keyword, many constructions are made available.

1.1.1 Template constructions as functions

Class templates can be seen as functions taking some parameters and returning a type. For ex-
ample, when writing:

template <class T>
struct Foo

{

¥

Foo is a function, taking a class T as parameter and returning a new type. On the contrary,
Foo<int> is a concrete type, result of the function Foo applied to T.

The same reasoning process stands for template functions, which are functions waiting for
some static parameters and returning a concrete function.

This way of considering template constructs will help the understanding of the next chapters.

1.1.2 Possible kinds of template parameters

A template parameter can be either a type, an integral constant (predefined types: int, char, etc.
excepted floats) or an unbounded template (non instantiated, still a function returning types).

For example:
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// Type parameter
template <class T>
struct FooT {};

// Constant parameter
template <char c>
struct FooChar {};

// Unbounded template parameter
template <template <class > class F>
struct FooUnbound
{

F<int > myfirstmember;

F<char > mysecondmember ;

};

struct FooT<int >;
struct FooChar<’a’>;
struct FooUnbound<FooT>;

// this is also wvalid since a qualified template is a type (FooChar<’'c’'>).
struct FooT<FooChar<’c’> >;

Note that non POD types cannot be used as template parameters:

struct Foo {};

template <Foo f> // invalid , Foo is not an integral type
struct Bar;

1.1.3 Possible template arguments
The main rule is (with many exceptions, we are in C++): whatever can be known at compile-time
can be a template argument.

Let us take the example of a Vector class having an integer template parameter representing the
dimension, one can write:

template <unsigned Dim>
struct Vector

{
//
b

struct InfoEnum

{

enum { dim = 2 };

b

struct InfoStaticConst

{

static const unsigned dim = 2;

};

char func();
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// This syntax can be used to explicitly instantiate template structures.
template struct Vector<2>;

template struct Vector <l + 1>;

template struct Vector<InfoEnum::dim>;

template struct Vector<InfoStaticConst::dim>;

template struct Vector<sizeof(char) + 1>;

template struct Vector<sizeof(func()) + 1>;

Note that sizeof can give the size of an expression without actually evaluating it. Here, func is
never called.

The same kind of indirections are possible with typedefs, as in the following example:

template <class T>
struct Foo

{1

struct Bar

{

typedef int param_type;
)i

template <class U>
struct Baz

{

typedef U param_type;
¥

template <class Ref>

struct Qux

{

// Look for the param_type defined in Ref
typedef typename Ref::param_type param_type;
b

// These 3 declarations are identical

template struct Foo<int>;

template struct Foo<Bar<int >::param_type>;
template struct Foo<Qux<Bar<int > >::param_type >;

static_cast can also be used without losing the static properties of arguments (this is obviously
false with dynamic_cast).

Static members can also be accessed at compile time. Their value, however, is only available
statically is the member is constant. Example:

#include <iostream>

template <unsigned I>
struct Bar

{};

struct Foo

{

static void

print ()
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{

std :: cout << "Foo:: print()

}

"

<< std::endl;

static unsigned dim_not_const;
static const unsigned dim_const = 5;

1
unsigned Foo::dim_not_const = 5;

template <class T>

void foo ()

{
// May be inlined , the method call is resolved statically.
// No instance is required.
T::print ();

// Its address can be used statically also
std :: cout << T::dim_not_const << std ::endl;

}

template struct Bar<Foo::dim_const>; // allowed , dim_const is const
template struct Bar<Foo::dim_not_const>; // obviously forbidden

What is interesting to notice in this section is that all the computation required to resolve the
indirections and find the actual types or values to use are performed by the compiler. Thus, no
runtime overhead should be observed if your C++ compiler is intelligent enough (this is generally
the case, fortunately).

1.14 Template evaluation

Template constructions are functions waiting for arguments to return something. So until they
get concrete arguments they cannot be completely evaluated. Some compilers may detect code
which will never work whatever the arguments are, but most compilers will just ignore the tem-
plate code until it is instantiated. So be careful when writing code with templates, if they are not
instantiated, you cannot be certain that your code is correct, even at the syntax level.

Template evaluation is lazy, templates are instantiated when they are used somewhere in the
code or if they are explicitly instantiated (as in the previous examples).

1.2 Template specialization

C++ templates can be specialized, completely or partially. This means we can write dedicated
code for some particular values of the parameters. However, template specialization is only
allowed at the namespace level. This means neither template member functions cannot be spe-
cialized, neither inner template classes:

template <class T>
struct Foo
{
template <class U>
struct Bar {};
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#if 0
template <>

struct Bar<int >; // forbidden , we are not at the namespace level
#endif

template <class U>
void foo ();

#if 0
template <>

void foo<int >(); // forbidden , we are not at the namespace level
#endif

};

// This is ok
template <>
struct Foo<int>

{};

template <class U>
void foo ();

template <>
void foo<int >(); // ok

The first property to keep in mind is the exact matching of template parameters, which is not
always natural, as in the following example:

// Default version
template <class T>
struct Dim
{

enum { dim = 51; }

};

struct Image2d
{1

struct Squarelmage2d : public Image2d
h

// Specialization for A
template <>
struct Dim<Image2d>

{

enum { dim = 2; }

b

int main ()
{
// Prints 51
std :: cout << Dim<Squarelmage2d >::dim << std ::endl;

}

Since the template matching mechanism performs an exact matching, the version of Dim spe-
cialized for Image2d is not analyzed when the argument is Squarelmage2d, even if a Squarelmage2d
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“is” (in the sense of inheritance) an Image2d. The same rules are applied with function overload-
ing when templates are involved, the default version is much more greedy:

#include <iostream>
template <class T>
void foo(T)

{

}

std :: cout << "foo(T)" << std::endl;

struct Image2d {};
struct Squarelmage2d : public Image2d {};

void foo (Image2dé&)
{

std :: cout << "foo(Image2d)" << std::endl;

}

int main ()
{
// Prints " foo(T)".
foo (Squarelmage2d ());
}

1.2.1 Partial specialization

Partial specialization consists in bounding only a subset of the template parameters. Template
classes can be partially specialized, however template functions cannot. Note that partial special-
ization if not restricted to the namespace level, unlike total specialization (I guess you are now
beginning to love C++).

// Exo: specialization of an inner struct

template <class T, class U>
void foo ();

// Partial specialization of functions is forbidden.
#if 0

template <class T>

void foo<T, int >();

#endif

template <class T, class U>
struct Foo

{};

// Ok, partial specialization
template <class U>
struct Foo<int, U>

{};

struct Bar

{
template <class T, class U>
struct Baz;
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// Ok, partial specialization is possible in structs.
template <class T>
struct Baz<T, int>;

b

Exercise 1.1

The goal of this exercise is to find a workaround to allow total specialization of inner structs. The
solution should have the same behavior as this code:

#include <iostream>

struct A

{
template <class T>
struct B

{

static void foo ()

{

std :: cout << "B<T>::foo()" << std::endl;
}
b

template <>
struct B<int>

{

static void foo ()

{

std :: cout << "B<int >::foo ()" << std::endl;

¥
};

int main ()
{

A::B<int>::foo (); // "B<int >::foo()”
}

Hint: template parameters can have default values.

Exercise 1.2

Find a solution to have partial specialization of static template member functions.

#include <iostream>

template <class V>

struct A

{
template <class T, class U>
static void foo ()

{
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std :: cout << "foo<T,_U>, sizeof(V): " << sizeof(V) << std::endl;

}

template <class T>
static void foo<T, int>()
{
std :: cout << "foo<T,_int>, sizeof(V):" << sizeof (V) << std ::endl;
}
¥

int main ()

{
A<int >::foo<char, int>(); // should print "foo<T, int>, sizeof(V): 4"

}

1.3 Symbol lookup

By symbol lookup, we regroup function lookup, variable lookup, etc. Namespaces and overload-
ing rules are quite tricky in C++, so this section tries to show a few common difficulties.

1.3.1 Koenig lookup

Symbols do not always need to be prefixed by their namespace. By default, symbols will be
searched into the current namespace, into the namespace included within the current one with
the using keyword.

But this is not the only rule. When a function is called, candidates are looked for in the names-
pace of the arguments and even in the namespace of the template parameters of the arguments.
This is illustrated in the following example:

namespace nsp_foo {

struct Foo

{};

template <class T>
void foo(T)
{}

}
namespace nsp_bar |

template <class T>
struct Bar

{};

void bar ()
{

// foo will be found in nsp_foo because its argument
// is in namespace nsp_foo.
foo (nsp_foo::Foo());
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// foo will be found in nsp_foo because its argument has a
// template parameter in namespace nsp_foo.
foo (Bar<nsp_foo::Foo>());

}

1.3.2 Opverloading and inheritance

Be careful with overloading and inheritance, if a function is redefined in a subclass, versions of
the function taking other kinds of parameters are not considered. An using directive is required:

struct A

{
static void foo (int)
{}

b

struct B : public A

{
static void foo (double)
{}

b

struct C : public A

{
// Import A version of foo
using A::foo;

static void foo (double)

{}
b

int main ()

{
B::foo(5); // will not call A::foo(int)
C::foo(5); // will call A::foo(int)

}

1.3.3 Template functions argument deduction

Template parameters can be implicitly deduced if they are used as parameters of the function.
The deduction can be intelligent:

template <class T>
struct A {};

template <class T>
void foo (A<T>)
{1

int main ()

{
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A<int > a;
foo(a); // ok, T will be identified as int
}

1.4 Common troubles

1.4.1 How to use the typename keyword

The typename keyword tells the compiler that the following expression is a type. It is often useful
to disambiguate template expression, for example in typedef T::foo bar;, with T a template param-
eter, whether foo is a type, a constant or a function cannot be known by the compiler.

The exact rules are quite complicated and tricky (once again), so the general rule to apply is:
put a typename whenever you use type template expression within a template, and test with
several compilers.

1.4.2 The template keyword for disambiguation

The template keyword may be necessary in some weird situations to tells the compiler that the
following expression is a template, see
http://www.Irde.epita.fr/cgi-bin/twiki/view/Know/TemplateKeywordForDesambiguation

for more details. You might need it with standard compliant compilers.
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A few metaprogramming tools

Introduction

With the introduction of templates, people initially wanted to bring genericity to the C++. Ac-
tually, template constructs are much more powerful than initially though. A complete meta pro-
gramming level is available, which has been proved to be Turing complete! This means we can
make the compiler execute real programs, manipulating C++ code (essentially types). (Veld-
huizen, 1999) gives some example of complex programs which can be written in meta C++. This
chapter gives a very short overview of the tasks which can be achieved at compile-time. The goal
is to write basic tools which will be useful very often.

2.1 Static conditions

Conditionals can be written in meta C++ using template specialization. The goal of our meta_if is
to choose between 2 types, depending on a condition. Example:

template <class T>

void foo ()

{
typedef meta_if(sizeof(T) == 4, int, float) my_type;
my_type tmp;

}

This code should make my_type an int if sizeof(T) == 4, or a float otherwise. Or course, the con-
dition will have to be static. This code can be easily implemented using template specialization.
The code is left as an exercise.

Exercise 2.1

Write the meta_if structure enabling this code to work:

#include <iostream>

// meta_if
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template <class T>

void foo ()

{
typedef typename meta_if<sizeof(T) == 1, char, float >::ret my_type;
std :: cout << sizeof (my_type) << std::endl;

}

int main ()
{

foo<char >(); // prints "1”

foo<float >(); // prints sizeof(float), generally "4"
}

2.2 Static assertions

(Alexandrescu, 2001) has written a complete chapter about static assertions. This section only
introduces the topic.

As seen in Chapter 1, template evaluation is lazy. This means we can write template code which
may fail to compile if the given parameters do not satisfies our constraints, the only thing we
must not do is to actually instantiate the templates with the wrong parameters. Let us consider
the following example:

template <bool b>
struct static_assert

{

static void ensure () {};

b

template <>
struct static_assert<false>

{

// no ensure()

b

template <class T>
void foo ()

{

static_assert <sizeof(T) == 1>::ensure();

}

int main ()

{
foo<char >(); // ok
foo<int >(); // does not compile, sizeof(int) I=1

}

This assertion will be evaluated statically, preventing the instantiation of invalid code.
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Exercise 2.2

In the following example:

template <class T>
struct Foo

{};

template struct Foo<char>;
template struct Foo<int>; // should not compile

You have to ensure that the condition of the previous section is respected: sizeof(T) must be
equal to 1. Instantiation of Foo with a wrong type should fail at soon at possible. The check code
should be reusable.

2.3 Loops

Loop can be executed by the compiler. This can seem surprising, but creates many opportunities
to beat the compiler hard (it is a good solution to relax after a few hours of C++ programming).

The trick comes from two main observations:

e arithmetic operations on static arguments are computed statically;
e templates can be specialized implicitly.
To illustrates the possibilities of loops in metaprograms, we will take the classical example of

the factorial function (also in (Veldhuizen, 1999)). It is possible to make the compiler compute the
factorial of a number:

#include <iostream>

template <int n>
struct fact

{

enum { res = n x fact<n — 1>::res };

}

template <>
struct fact<0>

int main ()

{

std :: cout << fact<10>::res << std ::endl;

}

Why does this work ? The multiplication n * fact<n — 1>:res can be done statically, since both
n, a template parameter, and fact<n - 1>:res, an enum value, can be statically computed.

This technique leads to good loop unrolling possibilities, as shown in (Veldhuizen, 1999) with
a dot product optimization example.
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2.4 Traits

Let us start with a simple example:

template <class T>
struct type_traits;

template <>

struct type_traits <unsigned char>

{

typedef unsigned short bigger_type;
// ... other associated properties

b

template <>
struct type_traits <signed int>

typedef signed long bigger_type;
/.
b

// ... other specializations of type_traits

template <class T>
type_traits <T>::bigger_type
compute_sum (T data[5])
{
type_traits <I>::bigger_type sum = 0;
for (unsigned i = 0; i <5; ++1)
sum += data[i];
return sum;

The compute_sum functions computes the sum of five elements of type T. If the result is stored
in a variable of type T, an overflow will certainly occur. We would like to store the result if a
bigger type than T to decrease the probability to get an overflow. The bigger type to use depends
on T. Template classes, which can be specialized, are a good way to associate static properties
(types, values, static functions, ...) to a particular type, or more generally to a particular set of
static parameters (template classes can have several parameters).

This is often useful when writing generic algorithms or generic classes when one need to access
to some properties of the template parameter. Do not forget that template specialization are just
classes, and can inherit from other classes. So traits of one type can inherit from traits of another
type for example.

Exercise 2.3

Implement a generic function plus(T, U) which returns the result of the addition of the two pa-
rameters. The return type depends on the of the input parameters, with the following rules:

e T+T=T

e char + int = int + char = int
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e any type + float = float + any type = float

Code redundancy should be minimized.

Example of test code:

#include <cassert>

/!

int main ()

{
assert ( sizeof(plus(1l, 2)) == sizeof(int) );
assert ( sizeof (plus(0.5f, 2)) == sizeof(float) );
assert ( sizeof(plus(2, 0.5f)) == sizeof(float) );
assert ( sizeof(plus(true, 0.5f)) == sizeof(float) );
assert ( sizeof(plus(’c’, 5)) == sizeof(int) );
assert ( sizeof(plus(true, false)) == sizeof(bool) );

Exercise 2.4

Find a solution to implement commutative traits automatically, that is: traits <T, U>:ret should
be the same as traits <U, T> without explicitly defined both specialization. Example:

template <class T, class U>
struct my_traits;

template <>
struct my_traits<int, char>

{
typedef int ret;
¥

int main ()

{
assert ( sizeof(my_traits<int, char>::ret) == sizeof(int) );
assert ( sizeof(my_traits<char, int >::ret) == sizeof(int) );

b

Hint 1: do not actually use my_traits in the user code, but a wrapper which performs the re-
quired additional computations.

Hint 2: You can use meta_if.

Hint 3: Hey, you already have enough hints!

2.5 Recommended readings

Todd chapter on metaprogramming is interesting, you should especially read the section about
dot product unrolling. However, the FFT example is complicated, and not that interesting from
a didactic point of view.



Chapter 3

Useful techniques

Now you should be quite familiar with template constructs and the expression power one can
use to make the compiler execute programs. This chapter focuses on more specific techniques,
which can be helpful in some applications. In all cases, it is worth at least knowing that they exist,
and they gives some concrete application of the weird and complicated C++ you have started to
learn.

3.1 Static lists

(Alexandrescu, 2001) has a complete chapter about static lists. It is worth reading it to get a big
complete panel of the possibilities, but this section should be enough to get only an overview of
the main principles. Anyway, it may be better to read and work on the exercise of this section
before discovering more details in the book of Andrei Alexandrescu.

On one hand, template classes can take type arguments. On the other hand, template classes
are themselves types when their arguments are specified. This way, recursive templates can be
constructed:

struct End;

template <class T>
struct Recursive

{};

template struct Recursive < Recursive < Recursive<End> > >;

Recursive takes one type parameter, which is itself of type Recursive, etc. This code is not really
interesting, but opens a new field of opportunities to torture the C++ compiler. If Recursive takes
one additional parameter, an element, and keeps the second parameter to continue the recursion,
we get linked lists:

struct End;

template <class Element, class Next>
struct List

{};
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template struct List<int, List<char, List<float, End> > >;

Each List class holds an element and the next elements. What is interesting here is that we have
a list of types, which can be handled at compile-time as we want.

Exercise 3.1

Store the size of static lists (statically of course). Sample test code:

#include <cassert>
struct End;

template <class Element, class Next>
struct List

{
};

//

int main ()

{
typedef List<int, List<char, List<float, End> > > mylist;
assert ( mylist::size == 3 );

}

List of types can be useful is many applications, refer to (Alexandrescu, 2001) for more exam-
ples. Here we will detail just one idiom where lists can be useful: inheritance from a list of types.
We will consider a generic class Aggregator which takes a list of types and inherit from each one.
The code is almost straight forward using type lists:

struct End;

template <class Element, class Next>
struct List

{};

struct Foo
{

void foo () {}
b

struct Bar

{

void bar () {}
1

template <class T>
struct Aggregator
{1

template <class Element, class Next>
struct Aggregator<List <Element, Next> >
public Element, // Inherit from the current type
public Aggregator<Next> // Inherit from the remaining types indirectly
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{1

int main()

{
Aggregator < List <Foo, List <Bar, End > > > agg;
agg.foo ();
agg.bar ();

Exercise 3.2

The goal of this exercise is to implement a meta_switch, in the same spirit as the meta_if. Basically,
a switch is an expression (of type integer so simplify the exercise), followed by a list of cases. Each
case is a pair (value of the expression, result). You should implement the code of the meta_switch
which allows the following code to work:

#include <cassert>
// ... meta_switch

template <unsigned expr>
unsigned foo ()
{
typedef typename meta_switch<expr,
meta_case <1, char,
meta_case <4, int,
meta_case <8, float,
meta_default<bool>
> > > >uret result_type;
return sizeof (result_type);

}

int main ()

{
assert ( foo<1>()
assert ( foo<4>()
assert ( foo<8>()
assert ( foo<5>()
assert ( foo<12>()

sizeof (char) );
sizeof (int) );

= sizeof (float) );
= sizeof (bool) );
= sizeof(bool) );

Hint: you already have meta_if. Hint: the recursion is represented by meta_case.

3.2 Static polymorphism

Chapter 1.3 of (Veldhuizen, 1999) gives a good introduction of static polymorphism. You should
read and understand it (especially Section 1.3.3) before continuing to read this section.

In the following, we will consider this example:

template <class Exact>
struct AbstractImage
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{
Exact& exact ()
{
return static_cast<Exact&>(xthis);

}

unsigned size ()
{
// Dispatch on the exact type
exact ().size ();
}
¥

struct Mylmage2d : public Abstractlmage <Mylmage2d>
{
unsigned size ();
unsigned nb_row ();
unsigned nb_col ()

};

7

template <class Exact>
void foo (Abstractlmage<Exact>& ima)
{
/!
}

This is a direct application of the Barton and Nackman trick. For a theoretical discussion about
why we want foo to take an Abstractimage and not directly a template parameter T, thereby solving
the polymorphism issues, see (Lesage, 2003). The main idea is that we want to keep strong both
function signature (to keep overloading possibilities) and abstraction power.

Now imagine that we want to define an abstraction for 2d images, say Abstractimage2d. We
need to apply the Barton and Nackman trick to a 3-level hierarchy. This can be done easily by
propagating the exact type all over the hierarchy:

template <class Exact>
struct Abstractlmage
{

Exact& exact ()

{

return static_cast<Exact&>(xthis);
}

unsigned size ()
{
// Dispatch on the exact type
exact ().size ();
}
b

template <class Exact>
struct AbstractImage2d

public Abstractimage<Exact> // Propagation of the Exact parameter
{

unsigned nb_row ()

{

return exact().nb_row (); // exact () is inherited for Abstractlmage
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}

unsigned nb_col ()
{
return exact().nb_col();
}
b

struct Mylmage2d : public AbstractImage2d <Mylmage2d>
{
unsigned size ();
unsigned nb_row (
unsigned nb_col (

b

7

)
);

template <class Exact>
void foo2d (Abstractlmage2d<Exact>& ima2d)
{
ima2d .nb_row ();
//
}

int main ()
{
Mylmage2d ima;
foo2d (ima); // ok
}

This way, hierarchies with an arbitrary number of levels can be defined. However, only leafs

classes (here MyImage2d) can be instantiated. If we want to have classes containing virtual meth-
ods but which can still be instantiated (with default code for the virtual methods), the problem
becomes more complicated. (Lesage, 2003) studies of how complex hierarchies, much more sim-

ilar to classical hierarchies can be defined.

3.3 Expression templates

(Veldhuizen, 1999) has a comprehensive and interesting Chapter about expression templates. It is
a useful method to keep somewhere in your mind, so you are highly advised to read it (Chapter

1.9).



Conclusion

You should now be prepared to read more specific and advanced material. Do not forget to read
(at least quickly) the given references, which are really essential.



Appendix A

Solutions to exercises

A.1 Exercise 1.1

#include <iostream>

struct A
{

// The default argument will not change the call in the user code.
template <class T, class Bogus = void>
struct B
{

static void foo ()

{

std :: cout << "B<T>::foo ()" << std::endl;

}

¥

// partial specialization is accepted
template <class Bogus>
struct B<int, Bogus>
{
static void foo ()
{

std :: cout << "B<int >::foo ()" << std::endl;

};
Vs

int main ()

{

A::B<char>::foo(); // "B<T>::foo()”
A::B<int>::foo (); // "B<int >::foo()”
}

The trick is to simulate partial specialization, which is possible for inner structs. Yes, this is
tricky, but the C++ is a tricky language!
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A.2 Exercise 1.2

#include <iostream>

template <class V>
struct A
{
template <class T, class U>
static void foo ()
{
foo_struct<T, U>::foo();

}

template <class T, class U>
struct foo_struct

{

static void foo ()
{
std :: cout << "foo<T,_ U>:
}
b

<< sizeof (V) << std::endl;

template <class T>
struct foo_struct<T, int>

{

static void foo ()

{

std :: cout << "foo<T,_int>:

<< sizeof (V) << std::endl;

Vs
1

int main ()

{
A<int >::foo<char, int >(); // should print ”"foo<T, int>: 4"

}

Static functions can be enclosed in structs. Since structs partial specialization is possible, partial
specialization of member functions is also possible!

A.3 Exercise 2.1

#include <iostream>

template <bool cond, class T, class U>
struct meta_if

{
typedef T ret;
¥

template <class T, class U>
struct meta_if<false , T, U>

{
typedef U ret;
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}s

template <class T>
void foo ()
{

typedef typename meta_if<sizeof(T) == 1, char, float >::ret my_type;

std :: cout << sizeof (my_type) << std::endl;

}

int main ()
{
foo<char >(); // prints sizeof(char)
foo<int >(); // prints sizeof(float)
}

The code is really simple. meta_if returns the first type is the condition is true, the second one

otherwise.

A.4 Exercise 2.2

template <bool b>
struct static_assert

{
typedef void ensure_type;

bi

template <>
struct static_assert<false>

{};

template <class T>
struct Foo

{
b

template struct Foo<char>;
template struct Foo<int>; // does not compile

typedef typename static_assert<sizeof(T) == 1>::ensure_type ensure_type;

If the boolean is false, ensure_type is not found, and the class cannot be instantiated.

A.5 Exercise 2.3

#include <cassert>
// Default

template <class T, class U>
struct plus_traits;

// T+ T
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template <class T>
struct plus_traits<T, T>

{
typedef T ret;
1

// char + int ; int + char

template <>
struct plus_traits <char, int>

{
typedef int ret;
¥

template <>

struct plus_traits <int, char> : public plus_traits <char, int> {};

// float + T ; T + float

template <class T>
struct plus_traits <float, T>

{
typedef float ret;

b

template <class T>

struct plus_traits<T, float > : public plus_traits <float, T> {};

// plus

template <class T, class U>
typename plus_traits<T, U>::ret
plus(T t, U u)
{

return t + u;

}

int main ()

{
assert ( sizeof (plus (1, 2))
assert ( sizeof(plus(0.5f, 2))
assert ( sizeof (plus(2, 0.5f))
assert ( sizeof(plus(true, 0.5f)) sizeof (float) );
assert ( sizeof(plus(’c’, 5)) = sizeof (int) );
assert ( sizeof (plus(true, false)) == sizeof(bool) );

sizeof (int) );
sizeof (float) );
sizeof (float) );

Note the use of inheritance between traits to factorize the code.

A.6 Exercise 2.4

#include <cassert>

// meta_if
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template <bool b, class T, class U>
struct meta_if

{
typedef T ret;
1

template <class T, class U>
struct meta_if<false, T, U>

{
typedef U ret;

};
struct undefined;

template <class T>
struct is_defined

{

enum { ret = true };

b

template <>
struct is_defined <undefined>

{

enum { ret = false };

b
// Default my_traits

template <class T, class U>
struct my_traits_core

{
typedef undefined ret;

b
// Try my_traits_core<T, U>, if it is undefined

template <class T, class U>
struct my_traits

{
typedef typename

meta_if<is_defined <typename my_traits_core<T,

typename my_traits_core<T, U>::ret,

typename my_traits_core<U, T>::ret >::

}s

template <>
struct my_traits_core<int, char>

{
typedef int ret;

bi

int main ()

{
assert ( sizeof (my_traits<int, char>::ret) ==
assert ( sizeof (my_traits<char, int>::ret) ==

}s

, return my_traits_core<U, T>

U>::ret >::ret,

ret ret;

sizeof (int) );
sizeof (int) );
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The real traits are defined in my_traits_core. my_traits first tries the normal order, but if no
specialization exists it tries the inverse order.

A.7 Exercise 3.1

#include <cassert>

struct End
{
enum { size = 0 };

b

template <class Element, class Next>
struct List

{
enum { size = 1 + Next::size };

};

int main ()

{
typedef List<int, List<char, List<float, End> > > mylist;
assert ( mylist::size == 3 );

}

No comment, this code is simple, isn’t it?

A.8 Exercise 3.2

#include <cassert>

template <bool cond, class T, class U>
struct meta_if

{
typedef T ret;

bi

template <class T, class U>
struct meta_if<false, T, U>

{
typedef U ret;

bi

template <int Value, class Res, class Next>
struct meta_case;

template <class Res>
struct meta_default;

template <int Expr, class Cases>
struct meta_switch;

// Try one case
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template <int Expr, int Value, class Res, class Next>
struct meta_switch<Expr, meta_case<Value, Res, Next> >
{
// If Expr == value, return the value associated to the case.
// Otherwise try next cases.
typedef typename
meta_if <Expr == Value,
Res,
typename meta_switch<Expr, Next>::ret >::ret ret;

};

// Default case
template <int Expr, class Res>
struct meta_switch<Expr, meta_default<Res> >

{
typedef Res ret;
¥

template <int expr>
unsigned foo ()
{
typedef typename meta_switch<expr,
meta_case <1, char,
meta_case <4, int,
meta_case <8, float,
meta_default<bool>
> > > >uret result_type;
return sizeof(result_type);

}

int main ()

{
assert ( foo<1>()
assert ( foo<4>()
assert ( foo<8>()
assert ( foo<5>()
assert ( foo<12>()

sizeof (char) );
sizeof (int) );

sizeof (float) );
sizeof (bool) );
sizeof (bool) );

meta_switch<meta_case> analyzes the current case, in the value is not good, it continues on the
next cases. If meta_default is encountered, the recursion stops and the corresponding type is
returned.

)
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