
Safe and efficient data types in C++

Nicolas Burrus

Technical Report no0212 - January 2003

Using C++ builtin types is very unsafe. Indeed, they are inherited from C types, which do not have overflow
checking and have dangerous side effects and unexpected behaviors. Using intensive meta programming, it
becomes possible to design safe data types with a minimal runtime overhead. As we want to be able to use
existing algorithms, these types have to interact transparently with C++ builtin types. Primarily designed
for Olena, a generic image processing library, our work provides mechanisms to allow easy integration in
generic algorithms.

Keywords
Data types, Object-Oriented Programming, Scientific computing, Generic Programming, Static Meta-programming,
Advanced C++

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
lrde@epita.fr – http://www.lrde.epita.fr

lrde@epita.fr
http://www.lrde.epita.fr

Contents

1 Introduction 4
1.1 Data types? . 4
1.2 Programming language . 4
1.3 Context . 4
1.4 Motivations . 5

1.4.1 Builtin types are dangerous . 5
1.4.2 Generic algorithms . 5

2 Overview of existing approachs 6
2.1 Octave, Matlab . 6

2.1.1 Presentation . 6
2.1.2 Benefits . 6
2.1.3 Drawbacks . 6

2.2 Vigra . 6
2.2.1 Presentation . 6
2.2.2 Benefits . 7
2.2.3 Drawbacks . 7

2.3 Olena before v0.6 . 7
2.3.1 Presentation . 7
2.3.2 Benefits . 8
2.3.3 Drawbacks . 8

2.4 Ada . 8
2.4.1 Presentation . 8
2.4.2 Benefits . 9
2.4.3 Drawbacks . 9

2.5 Conclusion . 9

3 New datatypes : goals and features 10
3.1 Data type ? . 10
3.2 Safety . 10
3.3 Efficiency . 10
3.4 Strong typing . 11
3.5 Generic algorithms compatibility . 11
3.6 Controlled interactions . 11
3.7 Builtin interactions . 11
3.8 Decorations . 11
3.9 Extensibility . 11

4 Implementation 12
4.1 Introduction . 12
4.2 Global organization . 12

4.2.1 Overview . 12

3 CONTENTS

4.2.2 Data hierarchy . 13
4.2.3 Type characteristics hierarchy : typetraits . 13
4.2.4 Implementation hierarchy : optraits . 14

4.3 Operators . 15
4.3.1 Problems . 15
4.3.2 Implementation . 16

4.4 Safety checks . 18
4.5 Decorators . 18

5 Conclusion 20
5.1 Results . 20
5.2 Limitations . 20
5.3 Future work . 20

5.3.1 Decorators . 20
5.3.2 Algebraic properties . 21

6 Bibliography 22

A C++ technical points 23
A.1 Determinining parent type . 23
A.2 Overloading . 24

A.2.1 Problems . 24
A.2.2 Solution 1 . 25
A.2.3 Solution 2 . 25
A.2.4 Solution 3 . 25

A.3 Global operators - Namespace resolution . 26
A.3.1 Typical problem . 26
A.3.2 Koenig lookup . 26
A.3.3 Solution . 27

Chapter 1

Introduction

1.1 Data types?

By data types, we mean data storage unity and operations for their manipulation. This includes
Integers, Floats, Complexes, but also Vectors and Matrices, etc. Most of these data types are
usually implemented in the programming language’s core, called builtin types.

For example, we can distinguish four categories of data types :

• Scalars (Integers, Floats).

• Complex numbers (with polar representation, rectangular representation).

• Enumerated types (boolean, labels).

• Vectorial types (vectors, matrices).

1.2 Programming language

In this report, we use the C++ programming language to implement data types. Paradigms
and programming principles described here may be applied partially or totally with another
language, but it has to implement enough static features to keep the result fast and interesting.

All the provided source code tries to stay compliant with C++ standard, and always refuses
compilers extensions. The code has been tested with g++-2.95, g++-3.0, g++-3.1, g++-3.2, comeau
v4.301, and intel C++ compiler v7.

1.3 Context

Our data types were initially developed for Olena [?, ?, olena] an image processing generic library
in C++ developed by the LRDE (EPITA Research and Development Laboratory). Olena uses
intensive C++ meta programming and tries to give maximal genericity.

An image is represented by a matrix of points, and a point is represented by a data type.
One of the goals of the library is to provide a really efficient way to compute image processing
algorithms, so our data types need to be as efficient as possible. Furthermore, the library wants to
provide safe algorithms, and wants to detect types overflow, arithmetic errors, and incompatible
casts when possible, to avoid common mistakes and make safer programs.

5 Introduction

1.4 Motivations

1.4.1 Builtin types are dangerous

Problems start with the following statement : C++ builtin types are not safe. Consider the fol-
lowing code :

i n t i = 2 5 6 ;
unsigned char foo = i ; / / f o o = = 0

The C++ compiler will accept this code without any warning, and at runtime the program
will execute without any warning, but foo will be 0 and not 256. It is certainly a programmer
mistake, but she won’t be noticed of the problem.

Arithmetic operations too have potential problems :

unsigned i n t i = UINT_MAX;
unsigned i n t j = 5 ;
unsigned long long k = i + j ; / / k = = 4

Here k is big enough to contain to result of i + j , but in C++, an addition of two unsigned int
is stored on an unsigned int, before being casted into unsigned long long. That’s why an overflow
occurs.

We really want safer operations, and much stronger type checking!

1.4.2 Generic algorithms

Olena is a generic library, we need to write generic algorithms. This implies some new con-
straints, here is an example:

template < c l a s s DataType>
ResultType Sum(const Image<DataType >& ima)
{

ResultType s = zero_for_ResultType () ;
Image : : i t e r i (ima) ;

f o r _ a l l (i)
s + = ima [i] ;
return s ;

}

• DataType is generally too small to store the sum, so we need to specify a bigger type for
ReturnType, depending on Datatype.

• zero_for_result is also dependent on ReturnType, the function must not return the same type
if we are manipulating integers or vectors.

That’s why C++ builtin types do not satisfy our needs. Nevertheless they have a big advan-
tage: they are fast, and their operations can be easily optimized by the compiler.

Many existing projects are confronted to similar problems with types, so let us make a tour of
interesting existing approaches.

Chapter 2

Overview of existing approachs

2.1 Octave, Matlab

2.1.1 Presentation

Octave [2] and Matlab [1] use only double precision numbers as core data representation. They
doesn’t support integers, shorts, chars, etc.

To allow constraints on data types, Octave introduces a “range” structure, defined by its first
element, an increment (1 by default) and a maximal value.

2.1.2 Benefits

• Avoid problems with type range choices.

• Resolve genericity problems with basic data types.

• Solve overflow problems.

• Very simple to use.

2.1.3 Drawbacks

• Double precision numbers take 3 times more memory than an integer, and 12 times more
than a char. So when loading a 3D grey level image in memory, it takes 1728 times more
memory with octave/matlab than with the equivalent in C++ using char.

• Noticeable overhead in CPU, as floats are quite slower than integers.

2.2 Vigra

2.2.1 Presentation

Vigra [4] underlies on C++ builtin types, and defines traits to allow generic algorithms. Traits can
be interpreted like a structure which associates types or functions to a specific type. Here is an
example :

template < c l a s s T> s t r u c t l a r g e r _ t r a i t s ;

template < > s t r u c t l a r g e r _ t r a i t s <char > {
typedef short l a r g e r _ t y p e ;

} ;

7 Overview of existing approachs

template < > s t r u c t l a r g e r _ t r a i t s < f l o a t > {
typedef double l a r g e r _ t y p e ;

} ;

These traits define the associated larger type for char and float . Then larger_traits <T>::larger_type
will return the good larger_type associated with T.

So let us see how our generic sum is implemented with Vigra:

template < c l a s s DataType>
typename vigra : : NumericTraits <typename DataType > : : Promote
Sum(const Image<DataType >& ima)
{

typedef typename vigra : : NumericTraits <typename DataType > : : Promote ResultType ;
ResultType s ;
Image : : i t e r i (ima) ;

s = vigra : : NumericTraits <ResultType > : : zero () ;
f o r _ a l l (i)

s + = ima [i] ;
return s ;

}

Here return type is determined by vigra::NumericTraits. Traits can also help writing generic
arithmetic operations and other things which need to access properties associated to one or sev-
eral types.

2.2.2 Benefits

• Vigra uses builtin C++ types, so it doesn’t have compatibility problems with existing algo-
rithms.

• The system is simple, and does not improve too much compilation time.

• No overhead at execution time.

2.2.3 Drawbacks

• As it uses builtin types, it cannot implement safe arithmetical operators.

• Designing secure code implies a heavy work by the user.

• Non extensible, the set of data types is predefined.

2.3 Olena before v0.6

2.3.1 Presentation

Note : in this section, Olena refers to Olena versions older than 0.6.
Olena defines its own data types, int_u<nbits> (unsigned integer on nbits), int_s<nbits> (signed

integer on nbits), and so on. Thus it has a total control on side effects with these types. This allows
implementation of various verifications, increasing program safety.

Moreover, Olena defines traits in each of its type, so that writing generic algorithm is possible.
For each type, a coercion operator is defined toward the closer builtin C++ type to allow

compatibility with external algorithms and programs using builtin types.

2.4 Ada 8

To ensure safety, Olena mostly uses static checks. This means everything needs to be as
strongly typed as possible to determine at compile time most of the insecure operations. This
is why Olena implements type growing, for example, an addition of two int_u<8> results in an
int_u<9>, thus it is possible to statically check that assignements will not imply overflows.

2.3.2 Benefits

• No overhead at execution (everything static).

• A program which compiles does not have problems at execution.

• The types can be used in external algorithms as they can convert into corresponding C++
builtin types.

2.3.3 Drawbacks

• Some cases escape from static checking, for example with int_u8 a += b; it cannot check stat-
ically if a will overflow or not.

• Static checking often implies annoying behaviors, as shown in the following code :

/ / in t _u 8 : : min () + 1 r e t u r n s int_u9 , so we need t o c a s t i t
const int_u8 i n i t = c a s t : : force <int_u8 >(int_u8 : : min () + 1) ;

template < c l a s s T>
T average (const l i s t <T>& l)
{

T : : l a r g e r _ t y p e sum = T : : l a r g e r _ t y p e : : zero () ;

for (l i s t <T > : : i t e r a t o r i = l . begin () ; i ! = l . end () ; + + i)
sum + = i ;

/ / Here we know sum / l . s i z e () f i t s in T as i t ’ s an a v e r a g e , but we
/ / have t o i n s e r t a c a s t : : f o r c e .
return c a s t : : force <T>(sum / l . s i z e ()) ;

}

• Generic algorithm cannot be applied to builtins, as they don’t have associated traits. (T:: larger_type
does not work if T is int).

• Template tricks implies heavy compilation time overhead.

2.4 Ada

2.4.1 Presentation

The Ada programming language introduces interesting features for type checking and programs
security. Ada integer type has a strict interval, this means assigning too large a value into an
integer will fail at execution (or at compilation time if there are already enough informations).
But Ada also defines the notion of “subtypes” and constraint, which allow declaration of a type
which can take its value into 0..10 for example, and dynamic checks will be done if needed. It
even allows dynamic ranges for subtypes, calculated from expressions.

9 Overview of existing approachs

2.4.2 Benefits

• Programs will fail at execution if there is any problem, avoiding implicit overflows and
other common problems.

• The notion of range is really nice for programmers.

2.4.3 Drawbacks

• Type restrictions are too strong so explicit casts are often required.

• Runtime overhead because of dynamic checks.

2.5 Conclusion

This overview present several interesting features :

• Generic algorithms handling, including builtin types (Vigra).

• Dynamic checks and range constraints (Ada).

• Strong typing with growing types and static checks (Olena < 0.6).

However, none of the above implementation satisfy all our needs, so we will just take these
features as a starting point, and now focus on what we really want and need with data types.

Chapter 3

New datatypes : goals and features

This chapter gives an overview of the objectives we will try to reach. It is essentially a list of features and
constraints we will keep in mind in the next chapter.

3.1 Data type ?

There are many C++ builtin types: unsigned int, signed int, unsigned short, signed short, signed
char, etc. We do not want so many different types representing the same fundamental one, in-
teger. Family of types like unsigned integers, signed integers, floats would be much simpler to
manipulate.

3.2 Safety

Data types should detect most of the programmer low-level mistakes. Indeed, as they have all
control about operations concerning them : assignments, arithmetic calculus, coercion, compar-
isons, ..., they can ensure that results are coherent and without overflows. Using these possibili-
ties, a program which have not explicitly detected any problem should always have right values.

To perform such controls, our implementation will have to insert check code before every
assignments and operations. At a first glance, this seems quite incompatible with our second
main goal, efficiency.

3.3 Efficiency

Our types will be used to compute scientific calculus, so they have to be fast ! Fortunately, strong
typing and genericity will help. Indeed, many operations do not need any check at runtime if
we already know the value domains of operands are compatible. Here are basic examples of
assignments and operations which do not need runtime checks :

I n t e g e r _ o n _ 8 _ b i t s = I n t e g e r _ o n _ l e s s _ t h a n _ 8 _ b i t s ;
I n t e g e r _ o n _ 9 _ b i t s = I n t e g e r _ o n _ 8 _ b i t s + I n t e g e r _ o n _ 8 _ b i t s ;

So we want our data types to make an optimal use of static information which can be avail-
able, in order to keep maximal efficiency.

11 New datatypes : goals and features

3.4 Strong typing

To gather maximal information at compile time about type ranges and properties, it is necessary
to have a type system as strongly typed as possible. This permits the disabling of useless dynamic
checks and give the user a way to keep his types as small as possible. This is especially interesting
for image processing, to keep an entire image in the minimal memory space.

3.5 Generic algorithms compatibility

As explained in the introduction, being compatible with generic algorithms is not immediate. We
want both our types and builtin types to be compatible with generic algorithms.

3.6 Controlled interactions

Of course we do want usual operations and conversions between types. This means unsigned
integers should have arithmetic operations with other integers, unsigned integers should be able
to convert into signed integers and vice versa if the signed integer is positive.

3.7 Builtin interactions

More than just allowing conversion between our self-defined types and their closer builtin types,
it would be appreciable to allow arithmetic operations between them, without heavy code rewrit-
ing.

3.8 Decorations

Common types have well defined properties. For example, a vector type does not have compar-
ison operators. But in some cases, for a particular use, the user may want to have a relational
operator on vectors. The type with comparison operator should behave exactly the same way a
vector does, except for comparison. Obviously we do not want to completely rewrite a new type,
but just “decorate” the exiting vector type with a comparison operator.

3.9 Extensibility

More data types are always needed. Thus, implementing a new type should be kept as simple as
possible. This also implies the type hierarchy to stay “open”, allowing easy integration.

Chapter 4

Implementation

4.1 Introduction

This chapter describes the design and the implementation of the global data type system we
realized. For a better understanding the next sections will only refer to scalar types, so let us
describe them :

int_u<nbits, behavior> Unsigned integer on nbits. Behavior indicates what to do when a prob-
lem occurs, such as an overflow.

int_s<nbits, behavior> Same type than int_u but for signed integers.

sfloat Float numbers with simple precision.

dfloat Float numbers with double precision.

range<T, interval, behavior> range decorates a type T modifying its value domain. interval de-
fines the new interval. behavior specifies the consequences of an overflow.

cycle<T, interval> cycle allows modulo calculus on an existing type T. Assignments will be ap-
plied modulo the interval given.

Three behaviors are given with the standard distribution :

unsafe Just ignore overflows. This is mainly for internal use.

strict An overflow aborts the program.

saturate If a value can’t fit in the type interval, round it to the nearest bound.

To allow easy classification and discrimination on data types, they are organized in a hierar-
chical way. Actually, there are three hierarchies, as it is discussed on next section.

4.2 Global organization

4.2.1 Overview

The outline of our implementation mainly rely on orthogonalization. This approach gives much
more modularity and integration possibilities. Types are organized by a hierarchical way. To
get maximal performances, many static meta programming tricks are used, in particular static
hierarchies [6]. Three hierarchies are defined :

Data hierarchy The main one. Used for value storage.

13 Implementation

Characteristics hierarchy Associates types with data types. For example, cumul_type or larger_type.

Implementation hierarchy Defines operators and methods related to data types.

This division has several advantages :

• Builtins integration. Although they cannot integrates the data hierarchy, they can be rep-
resented in both characteristics and implementation hierarchies. Thus, operators imple-
mentation can be given for builtins (such as min() and max()), allowing generic algorithm to
work with builtin types.

• More flexible source code, and help to implement static hierarchies.

• Decorators can directly inherit the implementation of a type, without necessarily inherit
from the type. This results in a good factorization of the code.

These points will become more obvious when concrete implementation in C++ is discussed.

4.2.2 Data hierarchy

Figure 4.1: Data hierarchy.

Here is the scalar part of the data hierarchy. It is mostly interface classes, as no real meth-
ods are implemented into it, excepted constructors, conversion operators and the special value()
method to retrieve the actual value of the type. The basic type used to store value is given by the
characteristics associated to the corresponding type (for example, unsigned char is associated to
int_u<8>.

4.2.3 Type characteristics hierarchy : typetraits

This hierarchy has the same structure than the data one. But this time, only typedefs are defined
and inherited. As it is implemented using traits [6], builtins can be integrated. Here are example
of such classes :

/ / T r a i t s t o d e t e r m i n e t h e C b u i l t i n t y p e b i g enough t o s t o r e N b i t s

template <>
s t r u c t Get_CType_for_Unsigned <8>

4.2 Global organization 14

{
typedef unsigned char return_type ;

} ;

template <>
s t r u c t Get_CType_for_Unsigned <16>
{

typedef unsigned short return_type ;
} ;

/ / . . .

/ / T r a i t f o r i n t _ u

template < unsigned nbi ts , c l a s s behavior >
s t r u c t t y p e t r a i t s <int_u <nbi ts , behavior > > : public t y p e t r a i t s _ u n s i g n e d _ i n t e g e r
{

typedef int_u <nbi ts , behavior > s e l f ;

typedef Get_CType_For_Unsigned<nbi ts > : : re turn_type value_type ;
typedef i n t_s < n b i t s + 1 , behavior > signed_type ;
typedef int_u < 3 2 , behavior > l a r g e s t _ t y p e ;

} ;

/ / . . .

/ / T r a i t f o r i n t , i t works with b u i l t i n s !

template <>
s t r u c t t y p e t r a i t s <signed int > : public t y p e t r a i t s _ s i g n e d _ i n t e g e r
{

typedef i n t s e l f ;

typedef s e l f value_type ;
typedef s e l f signed_type ;
typedef unsigned i n t unsigned_type ;
typedef long l a r g e s t _ t y p e ;

} ;

4.2.4 Implementation hierarchy : optraits

optraits follows a hierarchy similar to the two others. Now we have value and traits for types,
optraits uses traits to implement operators and others methods on data types. Let us look at an
extract of the source code :

template < c l a s s S e l f >
s t r u c t o p t r a i t s _ i n t _ u : public o p t r a i t s _ i n t < S e l f >
{

/ / Get t h e s t o r a g e t y p e a s s o c i a t e d with S e l f
/ / N o t i c e t h e use o f t y p e t r a i t s , s o t h a t S e l f can be a b u i l t i n t y p e .
typedef typename t y p e t r a i t s < S e l f > : : s torage_type storage_type ;

/ / min and max r e t u r n s t o r a g e _ t y p e (g e n e r a l l y b u i l t i n s f o r non
/ / d e c o r a t e d t y p e s) f o r i n t e r n a l r e a s o n (t h e i d e a i s : i n s t a n t i a t i o n
/ / o f i n t _ u f o r example r e q u i r e s c a l l s t o min () and max () t o c h e c k
/ / bounds , so i f min and max i n s t a n t i a t e t h e m s e l v e s an int_u , we e n t e r
/ / in an i n f i n i t e l o o p .

15 Implementation

s t a t i c s torage_type min ()
{

return 0 ;
} ;

/ / . . .
} ;

template < c l a s s nbi ts , c l a s s behavior >
s t r u c t o p t r a i t s <int_u <nbi ts , behavior > >

: public o p t r a i t s _ i n t _ u <int_u <nbi ts , behavior > >
{

typedef int_u <nbi ts , behavior > s e l f ; / / s h o r t c u t
typedef typename t y p e t r a i t s < s e l f > : : s torage_type storage_type ;

s t a t i c s torage_type max ()
{

/ / Get_Max_From_Unsigned < n b i t s > c a l c u l a t e max from b i t number .
return Get_Max_From_Unsigned<nbi ts > : : r e t ;

}

/ / . . .
} ;

/ / B u i l t i n t y p e can i n h e r i t i m p l e m e n t a t i o n from i t s non b u i l t i n e q u i v a l e n t .
template <>
s t r u c t o p t r a i t s <unsigned int > : public o p t r a i t s <int_u < 3 2 , s t r i c t > >
{

/ / i m p l e m e n t a t i o n i s i n h e r i t e d !

/ / You may want t o add or o v e r r i d e some f u n c t i o n a l i t i e s t h o u g h t .
} ;

4.3 Operators

The process chain used for arithmetic operators gives a good overview of the possibilities of our
type organization. Many arithmetic operations are available between every scalar types, and the
code often remains the same. This section introduces the problems with code factorization, and
brings a working solution.

4.3.1 Problems

We would like to write something close to this :

template < c l a s s T1 , c l a s s T2>
return_type operator + (const r e c _ s c a l a r <T1>& lhs , const r e c _ s c a l a r <T2>& rhs)
{

/ / v a l u e () r e t u r n s t h e s t o r a g e _ t y p e o f t h e type , s o h e r e i t c a l l s
/ / s t a n d a r d C o p e r a t o r ’ + ’ .
return l hs . value () + rhs . value () ;

}

But we also want to handle operations with builtins, such as int_u<8, strict > + unsigned int. A
naive solution may be to add (1) :

4.3 Operators 16

template < c l a s s T1 , c l a s s B2>
return_type
operator +(const r e c _ s c a l a r <T1>& lhs ,

const B2& rhs)
{

return l h s . value () + rhs ;
}

and (2) :

template < c l a s s T1 , c l a s s B2>
return_type
operator +(const B2& rhs ,

const r e c _ s c a l a r <T1>& lh s)
{

return l h s . value () + rhs ;
}

But this code is ambiguous for the compiler, section A.2 gives a complete explanation of the
problem, and gives several solutions. We chose a derivative of the last exposed one.

4.3.2 Implementation

Global operators are defined to get control over the operations being computed. The problem is
how to find the good implementation for every operation. optraits is our solution. The following
source clarify this idea :

template < c l a s s T1 , c l a s s T2>
return_type operator + (const T1& lhs , const T2& rhs)
{

/ / S t u f f t o d e t e r m i n e i m p l e m e n t a t i o n t y p e
/ / . . .
return o p t r a i t s <implementation_type > : : operator_plus (lhs , rhs) ;

}

Two unknown types are used in this code : return_type and implementation_type. Let us see
how to determine them.

Determining return type

Once again, traits will help us. The idea is to define return type for each operator and for each
type. Using this mechanism, we can implement type growing easily. This step is quite fastidious,
even it there is several ways to simplify it. Here is an example of traits defined for int_s :

/ / A d d i t i o n be tween two i n t _ s
template < c l a s s nbi ts , c l a s s b1 , c l a s s mbits , c l a s s b2>
s t r u c t o p e r a t o r _ p l u s _ t r a i t s < in t_s <nbi ts , b1 > , in t _s <mbits , b2 > >
{

enum { commutative = 1 } ;
/ / s t u f f t o d e t e r m i n e b e h a v i o r from b1 and b2
/ / . . .
typedef in t _ s <max<nbi ts , mbits > : : r e t + 1 , behavior > return_type ;

} ;

/ / . . .

17 Implementation

/ / M u l t i p l i c a t i o n be tween an i n t _ s and an i n t _ u
template < c l a s s nbi ts , c l a s s b1 , c l a s s mbits , c l a s s b2>
s t r u c t o p e r a t o r _ t i m e s _ t r a i t s < in t_s <nbi ts , b1 > , int_u <mbits , b2 > >
{

enum { commutative = 1 } ;
/ / s t u f f t o d e t e r m i n e b e h a v i o r from b1 and b2
/ / . . .
typedef i n t _s < n b i t s +mbits + 1 , behavior > return_type ;

} ;

/ / . . . o t h e r t r a i t s

Traits are defined for arithmetic, logical and comparison operators. You may have noticed the
commutative value, which simplify the process implicitly defining define reverse traits when the
return_type remains the same. You may also wonder how builtin types are handled this way,
without defining traits for every one. These two features are possible thanks to a wrapper,
deduce_from_traits. Indeed, the programmer should not use operator_xxx_traits directly. Here is
the main principle of deduce_from_traits, in pseudo C++ :

define NON_BUILTIN(T) / / g i v e non b u i l t i n e q u i v a l e n t t y p e o f T
/ / For example , NON_BUILTIN(uns igned c h a r) r e t u r n s
/ / int_u < 8 , s t r i c t > .

/ / . . .

template < template <c lass , c lass > t r a i t s , c l a s s T1 , c l a s s T2>
s t r u c t deduce_from_trai ts
{

meta_i f < t r a i t s <T1 , T2 > i s defined >
{

typedef t r a i t s <T1 , T2 > : : re turn_type return_type ;
}

m e t a _ e l s e _ i f < t r a i t s <T2 , T1 > i s defined
and t r a i t s <T2 , T1 > : : commutative i s true >

{
typedef t r a i t s <T2 , T1 > : : re turn_type return_type ;

}
m e t a _ e l s e _ i f < t r a i t s <NON_BUILTIN(T1) , NON_BUILTIN(T2) > i s defined >

{
typedef t r a i t s <NON_BUILTIN(T1) , NON_BUILTIN(T2) > : : re turn_type return_type ;

}
m e t a _ e l s e _ i f < t r a i t s <NON_BUILTIN(T2) , NON_BUILTIN(T1) > i s defined

and t r a i t s <NON_BUILTIN(T2) , NON_BUILTIN(T1) > : : commutative i s true >
{

typedef t r a i t s <NON_BUILTIN(T2) , NON_BUILTIN(T1) > : : re turn_type return_type ;
}

} ;

This dispatching is entirely static. Now global operators can use :

template < c l a s s T1 , c l a s s T2>
deduce_from_trai ts < o p e r a t o r _ p l u s _ t r a i t s , T1 , T2 > : : re turn_type
operator + (const T1& lhs , const T2& rhs)
{

/ / . . .
}

4.4 Safety checks 18

Now remains one unknown type, implementation_type.

Determining implementation type

The answer is, guess what : traits. The idea is to insert implementation_type into all operator_xxx_traits.
This lets maximal flexibility. Now we have the final code of global operators :

template < c l a s s T1 , c l a s s T2>
deduce_from_trai ts < o p e r a t o r _ p l u s _ t r a i t s , T1 , T2 > : : re turn_type
operator + (const T1& lhs , const T2& rhs)
{

typedef deduce_from_trai ts < o p e r a t o r _ p l u s _ t r a i t s , T1 , T2 > : : impl_type impl_type ;
return o p t r a i t s <impl_type > : : operator_plus (lhs , rhs) ;

}

Final implementation of the operator

At last, in the optraits hierarchy, we can implement operator_xxx methods. All scalars operators
are defined in optraits_scalar class, from which all scalar types inherit. Thus, the code is written
only once :

template < c l a s s S e l f >
s t r u c t o p t r a i t s _ s c a l a r
{

template < c l a s s T1 , c l a s s T2>
deduce_from_trai ts < o p e r a t o r _ p l u s _ t r a i t s , T1 , T2>
operator_plus (const T1& lhs , const T2& rhs)
{

/ / . . .
}

} ;

template < unsigned nbi ts , c l a s s behavior >
s t r u c t o p t r a i t s <int_u <nbi ts , behavior > >

: public o p t r a i t s _ s c a l a r <int_u <nbi ts , behavior > >
{

/ / o p e r a t o r _ p l u s i s i n h e r i t e d
/ / However , you may r e w r i t e i t , o r add s p e c i a l i z a t i o n s .

}

The operator_plus method is implemented using section A.2 third solution principles.

4.4 Safety checks

We have the control on every operations, so it is easy to add checks in all constructors and after
every calculus to ensure the result is valid. The big advantage we have is that thanks to strong
typing and type minimal growing, we can generally avoid dynamic checks.

4.5 Decorators

Orthogonality of the type system will help us integrates decorators. Let us take range as an
example to explain the implementation of decorators.

19 Implementation

range will be inserted into the data hierarchy as a scalar. We cannot make it derivate from its
argument (at least not directly) since we would like to decorate also builtin type.

The implementation of range just have to inherit the implementation of the decorated type,
overriding min() and max :

template < c l a s s T , c l a s s i n t e r v a l , c l a s s behavior >
s t r u c t o p t r a i t s <range <T , i n t e r v a l , behavior > > : public o p t r a i t s <T>
{

typedef i n t e r v a l : : s torage_type i n t e r v a l _ t y p e ;

s t a t i c i n t e r v a l _ t y p e min ()
{ return i n t e r v a l : : min () ; }

s t a t i c i n t e r v a l _ t y p e max ()
{ return i n t e r v a l : : max () ; }

/ / . . .
} ;

Now range have a complete implementation, but what about traits needed for operators ?
There is a way to specify in typetraits the type to use to resolve traits searches. This type is then
used by deduce_from_traits to return the good result.

Chapter 5

Conclusion

5.1 Results

We have a working set of data types, already used in Olena 0.6. The current implementation
works quite fine and satisfy most of our objectives :

• Secure data types, operations and assignments are always verified.

• Fast checks thanks to very strong typing.

• Good transparent and complete builtins interactions.

• Support for generic algorithms.

• Basic support for decorators.

However, several limitations darken these results.

5.2 Limitations

As this report may have given the impression, the code is rather complex and unusual. Heavy
meta programming and static stuff certainly obfuscate things. Debugging is a real headache, and
error messages provided by compilers are generally hard to understand. Furthermore, compila-
tion time are dramatically increased, as there are many template instantiations and optimizations
to perform.

5.3 Future work

5.3.1 Decorators

Decorators are not well integrated in the hierarchy. This is really annoyong for several reasons :

• A general decorator will be on top of the hierarchy, as we don’t know where to put it. This
prevents it to pass directly (without casts) through algorithms waiting for the decorated
type.

• If there is particular methods in the data hierarchy for a type, the decrator won’t get it.

These problems are being corrected, and decorators will inherit from the decorated type, or
from the closest type if we are decorating builtin types.

21 Conclusion

5.3.2 Algebraic properties

Sometimes programs or algorithms works on particular algebraic types, such as group or monoid.
Using conditional inheritance [5], it is possible to automatically inherit from the good structure,
just describing the features of the type, such as having a relational order, a neutral element, ...
This feature would be especially useful for image processing.

Chapter 6

Bibliography

[1] Matlab. http://www.mathworks.com.

[2] Octave. http://www.octave.org.

[3] Olena: A generic image processing library. http://www.lrde.epita.fr.

[4] Vigra: Generic computing for computer vision. http://kogs-www.informatik.uni-
hamburg.de/ koethe/vigra/.

[5] David Lesage. Generic morphers. Technical report, LRDE, 2002.

[6] T. Veldhuizen. Techniques for scientific c++, 2000.

Appendix A

C++ technical points

A.1 Determinining parent type

It is possible in C++ to statically check if a type1 “is a” type2. This means type1 inherits from
type2.

For example, in a function template taking two parameters, it is possible to ensure T1 inherits
from T2 :

template < c l a s s T1 , c l a s s T2>
void foo (T1 lhs , T2 rhs)
{

i s _ a (T1 , T2) : : ensure () ;

/ / . . .
}

This also works with meta template parameters :

template < c l a s s T>
s t r u c t foo { } ;

/ / . . .

template < c l a s s T1 , c l a s s T2>
void bar (T1 l hs)
{

/ / w i l l a b o r t c o m p i l a t i o n i s T1 d o e s not i n h e r i t s from f o o <X>
i s _ a (T1 , foo) : : ensure () ;

/ / . . .
}

Technical note : is_a is implemented as a macro using several C++ tricks, but the main princi-
ple is based on C++ function overloading, consider the following code :

s t r u c t A { } ;
A∗ makeA () ;

s t r u c t B : public A { } ;
B∗ makeB () ;

s t r u c t C { } ;

A.2 Overloading 24

C∗ makeC () ;

typedef char _yes ;
typedef i n t _no ;

_yes foo (A∗) { }
_no foo (. . .) { }

i n t main () {
s i ze o f (foo (makeA ())) = = s i ze of (_yes) ; / / t rue , c h o o s e f o o (A∗)
s i ze o f (foo (makeB ())) = = s i ze of (_yes) ; / / t rue , c h o o s e f o o (A∗)
s i ze o f (foo (makeC ())) = = s i ze of (_yes) ; / / f a l s e , c h o o s e f o o (. . .)

}

A.2 Overloading

A.2.1 Problems

Let’s consider the following example :
We have a static hierarchy myValue, in which we find myInt, myFloat, etc ... We get the real

(in sense of builtin) value of any of these types using the value() method : myType.value(). We
want an operator+ beetween all these types :

We get (1) :

returnType operator +(const myValue<T>& lhs , const myValue<T>& rhs)
{

return l h s . value () + rhs . value () ;
}

Now we want interactivity with builtins types, as they have no hierarchy we must define (2) :

template < c l a s s T1 , c l a s s T2>
returnType operator +(const myValue<T1>& lhs , const T2& rhs)
{

return l h s . value () + rhs ;
}

and (3)

template < c l a s s T1 , c l a s s T2>
returnType operator +(const T1& lhs , const myValue<T2>& rhs)
{

return l h s . value () + rhs ;
}

If you try to compile this code doing myInt() + myFloat() the compiler says that your call is
terribly ambiguous. Indeed, to allow builtins types we said template <class T>, and as we cannot
define any restrictions on T, it includes myInt or myFloat. You may think : "but i have defined an
operator for myValue + myValue, he should call this one !", but in C++, overloading resolution
finds easier to consider myInt() or myFloat() as a T than going through the hierarchy, so the two
candidates are (2) and (3), and they have the same priority, no choice is possible.

25 C++ technical points

A.2.2 Solution 1

Define the carthesian product of operators : operator+(myInt, myFloat), operator+(myInt, un-
signed int), etc ... Quite tedious if you have many types !

A.2.3 Solution 2

Using meta programmation, the is_a tool described in section A.1, and a main generic interface
(if_ stands for static if) :

template < c l a s s T1 , c l a s s T2>
returnType operator +(const T1& lhs , const T2& rhs)
{

i f _ i s _ a (T1 , myValue)
then

i f _ i s _ a (T2 , myValue)
then " Cal l operator_plus_value_value "
e lse " Ca l l o p e r a t o r _ p l u s _ v a l u e _ b u i l t i n "

e lse
i f _ i s _ a (T2 , myValue)
then " Cal l operator_plus_notvalue_value "
e ls e " Ca l l operator_plus_notvalue_notvalue "

}

Now we just have to define the 4 operator_plus_* and it’s done. The first problem is compi-
lation time, and it can be tedious if we have to choose beetween many categories of types (many
levels of if_).

A.2.4 Solution 3

Let’s consider a class anyClass defined as above :

template < c l a s s T>
s t r u c t anyClass
{

anyClass (const T& t) : _ t a r g e t (t) { }
T s e l f () { return _ t a r g e t ; }
const T& s e l f () const { return _ t a r g e t ; }
const T& _ t a r g e t ;

} ;

anyClass can be constructed from everything, so that the cast is always possible to anyClass.
Now consider the following code :

template < c l a s s T1 , c l a s s T2>
returnType operator +(const myValue<T1>& lhs , const anyClass <T2>& rhs)
{

return l h s . value () + rhs . s e l f () ;
}

This operator will be chosen only if rhs is not a myValue, because the compiler prefers a
travel into the hierarchy to a cast. In fact we are constraining the T, telling the compiler to choose
this function is nothing else is possible. But it’s not terminated, the compiler will never call this
operator, as it cannot guess the T2 for anyClass which permit the cast. So we need to tell it
that he should try with the type itself (for example, it the parameter is unsigned, it should try
anyClass<unsigned>). That’s why we need an interface with explicit instantiation.

A.3 Global operators - Namespace resolution 26

returnType operator +(const T1& lhs , const T2& rhs) { return
operator_plus_impl <T1 , T2 >(lhs , rhs) ; } then we can def ine

returnType operator_plus_impl (myValue<T1 > , myValue<T2 >) ;
returnType operator_plus_impl (myValue<T1 > , anyClass <T2 >) ;
returnType operator_plus_impl (anyClass <T1 > , myValue<T2 >) ;

Conclusion The 2 methods which works quite fine need a global operator, but it is not such
a problem if we use namespace, as it will be explained in next section. Moreover, thanks to the
compiler optimisations, there is no runtime cost.

A.3 Global operators - Namespace resolution

A.3.1 Typical problem

Considering the following code :

/ / G l o b a l o p e r a t o r
template < c l a s s T1 , c l a s s T2>
void operator + (const T1 & , const T2&)
{

/ / . . .
}

s t r u c t A { } ;
s t r u c t B : public A { } ;

void operator +(const A& , const A&)
{

/ / . . .
}

i n t main ()
{

B () + B () ; / / c a l l s o p e r a t o r +(T1 , T2)
/ / . . .

}

Our global operator has superseded the operator+(A, A), this means using our data types
operators will intercept user defined operators. Moreover, it will interfere with STL stream oper-
ators and avoid using standard types such as std::string.

A.3.2 Koenig lookup

Here is an example of Koenig lookup :

namespace foo {

template < c l a s s T1 , c l a s s T2>
void operator + (const T1 & , const T2&)
{

/ / . . .
}

27 C++ technical points

s t r u c t myInt
{

/ / . . .
} ;

}

i n t main ()
{

foo : : myInt (5) + foo : : myFloat (6) ; / / ok i t f i n d s o p e r a t o r +(T1 , T2)
/ / . . .

}

This code shows the ability of C++ to search operators in the namespace of the arguments,
here when using plus with foo::myInt, it searches the possible operators in the namespace of
myInt.

A.3.3 Solution

So using Koening lookup we can hide global operators and types in a namespace safely, it will
not supersede users operators. This has a considerable drawback, it obliges users to call types by
their absolute names (ie with namespace), because an “using namespace foo” in the above code
would break the separation and make the global operator visible to the world.

A good solution is to defines only types in a “public” namespace, designed for using names-
pace directives :

namespace foo {

template < c l a s s T1 , c l a s s T2>
void operator + (const T1 & , const T2&)
{

/ / . . .
}

s t r u c t myInt
{

/ / . . .
} ;

}

namespace foo_publ ic {

using foo : : myInt ;

}

s t r u c t A { } ;
s t r u c t B : public A { } ;

void operator +(const A& , const A&)
{

/ / . . .
}

using namespace foo_publ ic ;

A.3 Global operators - Namespace resolution 28

i n t main ()
{

myInt (5) + myFloat (6) ; / / ok i t f i n d s o p e r a t o r +(T1 , T2)
B () + B () ; / / ok i t c a l l s o p e r a t o r +(A , A)
/ / . . .

}

	1 Introduction
	1.1 Data types?
	1.2 Programming language
	1.3 Context
	1.4 Motivations
	1.4.1 Builtin types are dangerous
	1.4.2 Generic algorithms

	2 Overview of existing approachs
	2.1 Octave, Matlab
	2.1.1 Presentation
	2.1.2 Benefits
	2.1.3 Drawbacks

	2.2 Vigra
	2.2.1 Presentation
	2.2.2 Benefits
	2.2.3 Drawbacks

	2.3 Olena before v0.6
	2.3.1 Presentation
	2.3.2 Benefits
	2.3.3 Drawbacks

	2.4 Ada
	2.4.1 Presentation
	2.4.2 Benefits
	2.4.3 Drawbacks

	2.5 Conclusion

	3 New datatypes : goals and features
	3.1 Data type ?
	3.2 Safety
	3.3 Efficiency
	3.4 Strong typing
	3.5 Generic algorithms compatibility
	3.6 Controlled interactions
	3.7 Builtin interactions
	3.8 Decorations
	3.9 Extensibility

	4 Implementation
	4.1 Introduction
	4.2 Global organization
	4.2.1 Overview
	4.2.2 Data hierarchy
	4.2.3 Type characteristics hierarchy : typetraits
	4.2.4 Implementation hierarchy : optraits

	4.3 Operators
	4.3.1 Problems
	4.3.2 Implementation

	4.4 Safety checks
	4.5 Decorators

	5 Conclusion
	5.1 Results
	5.2 Limitations
	5.3 Future work
	5.3.1 Decorators
	5.3.2 Algebraic properties

	6 Bibliography
	A C++ technical points
	A.1 Determinining parent type
	A.2 Overloading
	A.2.1 Problems
	A.2.2 Solution 1
	A.2.3 Solution 2
	A.2.4 Solution 3

	A.3 Global operators - Namespace resolution
	A.3.1 Typical problem
	A.3.2 Koenig lookup
	A.3.3 Solution

