Monocular human upper body pose estimation for sign language analysis

Nicolas Burrus <burrus@montefiore.ulg.ac.be>

Groupe ULG - INTELSIG

4th Multitel Spring Workshop, 2 June 2009

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Context					

3D(Stereo)Media

- Part of the Wallonian "Marshall plan"
- Motion capture
- Animation of virtual characters

Signspeak

- European project
- Automatic sign language analysis
- ULg: Focus on feature extraction: hand motion, facial expressions

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Objectiv	е				

Upper Body Tracking

- Provide hand position and velocity
- Head position and arm configuration
- 2D tracking

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Main E	Difficulties				

Segmentation issues

- Motion blur
- Self occlusion
- Clothing variability, etc.

Introduction Difficulties Upper Body Model Inference Results Conclusion
Motivates a top-down approach

Too many ambiguities

- Separate tracking of parts difficult
- Joint tracking is more promising

→ Multi-part statistical models

Pictorial models

- Combine structural a priori and likelihood
- Tree-shaped models allow fast inference

Main issues

- Likelihood and a priori models
- ② Computational complexity

Introduction Difficulties Upper Body Model Inference Results Conclusion
Motivates a top-down approach

Too many ambiguities

- Separate tracking of parts difficult
- Joint tracking is more promising

→ Multi-part statistical models

Pictorial models

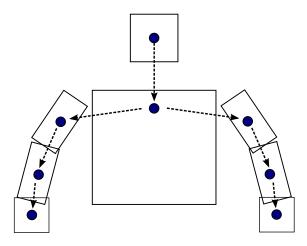
- Combine structural a priori and likelihood
- Tree-shaped models allow fast inference

Main issues

- Likelihood and a priori models
- Computational complexity

Introduction Difficulties Upper Body Model Inference Results Conclusion
Tree-shaped Bayesian Model

- Each part is a square or oriented rectangle (arms)
- Parameters are (*x*, *y*, *width*, [*height*, *angle*])



Introduction Difficulties Upper Body Model Inference Results Conclusion Required probabilistic quantities

Notations

- Image I
- Pose *L* =

 $\{L_{\textit{head}}, L_{\textit{tr}}, L_{\textit{IUpArm}}, L_{\textit{rUpArm}}, L_{\textit{ILowArm}}, L_{\textit{rLowArm}}, L_{\textit{IHd}}, L_{\textit{rHd}}\}$

A posteriori probability of a configuration L

 $P(L|I) \propto P(I|L) \times P(L)$

- *P*(*L*): structural *a priori*
- P(I|L): likelihood

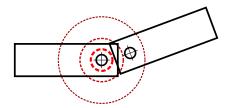
Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Structu	iral <i>a priori</i>				

Decomposition thanks to tree independence

 $\begin{array}{lll} P(L) & \propto & P(L_{tr}|L_{head})P(L_{IUpArm}|L_{tr})P(L_{rUpArm}|L_{tr}) \\ & \times P(L_{ILowArm}|L_{IUpArm})P(L_{rLowArm}|L_{rUpArm}) \\ & \times P(L_{IHd}|L_{ILowArm})P(L_{rHd}|L_{rLowArm}) \end{array}$

Chosen models

- Gaussian for junctions distances
- Uniform for orientations



Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Likelihoo	od terms				

Independence assumption between parts

- $P(I|L) \propto \prod_{i=1}^{8} P(I|L_i)$
- One color model per part (HS histogram)
- Histogram back-projection gives per pixel likelihood
- Can be thresholded

Hand example

Introduction

Difficulties

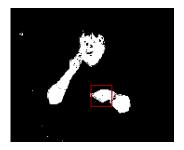
Upper Body Model

Inference

Results

Conclusion

Likelihood issues



Likelihood for a rectangle candidate

- Intuitively: proportional to the number of white pixels
- Depend upon the rectangle size
 - → Less significant for small rectangles
- ② Depend upon the chosen threshold
 - → Less significant if the threshold is low

A contrario reasoning

• Based on a perceptual principle (Helmholtz)

"The lower the probability for the proportion of white pixels to be high by accident, the most significant it is."

Concretely

- "Accident" H_0 = pixels i.i.d. in the image
- $P_{H_0}(N_w \geq N_w(L_i) \mid N, p_w) = \mathcal{B}_{\geq}(N_w(L_i), N, p_w)$
- N: size of the rectangle
- N_w : number of white pixels in the rectangle
- *p_w*: number of white pixels in the image

Deducing the likelihood

- *P*_{H₀}(*N_w* ≥ *N_w*(*L_i*) | *N*, *p_w*) quantifies the significance of the white pixel concentration
- The lower it is, the higher is the probability that the concentration is not due to chance, and thus to a part

Final likelihood

$$P(I|L_i) \propto 1.0 - [P_{H_0}(N_w \ge N_w(L_i) \mid N, p_w)]^{lpha}$$

- α: quantifies how the non-accidentality increases the confidence that the part is actually there
- Can be learned

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Inference	9				

Objective

- We can compute P(L|I) for a given pose L
- How to we find the most probable one?
- ③ The number of possible poses is too large to test them all

Classical solution 1: coarse discretization

- Efficient inference algorithms in trees (Belief Propagation)
- S Needs to be very coarse to remain efficient

Classical solution 2: non-parametric belief propagation (NBP)

- Approximate all quantities by particle filters
- O Accurate sampling of candidates
- ③ Time-consuming (several minutes per frame)

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Inference	9				

Objective

- We can compute P(L|I) for a given pose L
- How to we find the most probable one?
- © The number of possible poses is too large to test them all

Classical solution 1: coarse discretization

- Efficient inference algorithms in trees (Belief Propagation)
- S Needs to be very coarse to remain efficient

Classical solution 2: non-parametric belief propagation (NBP)

- Approximate all quantities by particle filters
- Accurate sampling of candidates
- S Time-consuming (several minutes per frame)

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Inference	е				

Objective

- We can compute P(L|I) for a given pose L
- How to we find the most probable one?
- © The number of possible poses is too large to test them all

Classical solution 1: coarse discretization

- Sefficient inference algorithms in trees (Belief Propagation)
- S Needs to be very coarse to remain efficient

Classical solution 2: non-parametric belief propagation (NBP)

- Approximate all quantities by particle filters
- S Accurate sampling of candidates
- S Time-consuming (several minutes per frame)

Discretization by importance sampling

Overall idea

- Use some proposal distribution *q* to sample candidates
- Assign them a weight $\frac{p}{q}$ (importance sampling)
- Find the best pose using classical BP (max-product)

→ Less accurate but faster than sampling from posterior

Different kind of proposals can be used

- Detection-based, e.g. gaussian around a detector output
- Temporal, e.g. gaussian around the position predicted by a constant velocity model
- Structural: e.g. sample a position from a parent candidate using the *a priori* model
- Can be combined, e.g. into a mixture of gaussians

Discretization by importance sampling

Overall idea

- Use some proposal distribution *q* to sample candidates
- Assign them a weight $\frac{p}{q}$ (importance sampling)
- Find the best pose using classical BP (max-product)

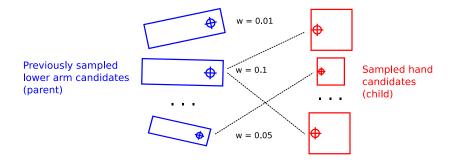
→ Less accurate but faster than sampling from posterior

Different kind of proposals can be used

- Detection-based, e.g. gaussian around a detector output
- Temporal, e.g. gaussian around the position predicted by a constant velocity model
- Structural: e.g. sample a position from a parent candidate using the *a priori* model
- Can be combined, e.g. into a mixture of gaussians

Introduction Difficulties Upper Body Model Inference Results Conclusion Example of structural proposal Fractional Conclusion Conclusion

- Draw a parent candidate according to their weights
- Sample a child candidate according to the a priori model



Settings

- Color models estimated from rough manual segmentation in one frame
- No temporal term
- Detection proposal for the head
- Structural proposals for other parts
- About 200 sampled candidates per part
- Only the left parts are shown

Dataset

- NGT Corpus of sign language
- Mostly static backgrounds

Introduction

Difficulties

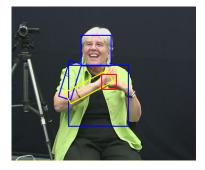
Upper Body Model

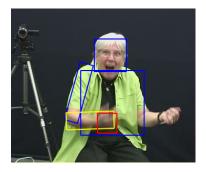
Inferei

Results

Conclusion

Examples of frames correctly estimated





Introduction

Difficulties

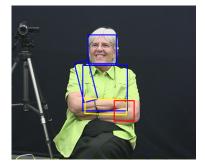
Upper Body Model

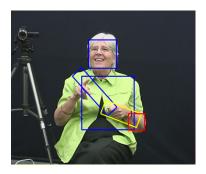
Inferer

Results

Conclusior

Examples of frames incorrectly estimated





Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Conclus	sion				

First results are encouraging

- Less than one second per frame
- Able to find the right pose on "easy" frames

Two originalities

- A contrario likelihoods
 - → Combine quantities in a principled way
 - → Can use multiple thresholds to increase robustness
- Discretization by importance sampling + BP
 - → Focus on promising regions
 - → Can integrate various heuristics
 - → Inference remains efficient

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion
Perspe	ctives				

Quantative evaluation

- Need for a labelled database
- Comparison with existing approaches

Improve the model

- Temporal terms
- Contour-based terms
- Learn parameters
- Handle self-occlusions explicitely to improve likelihood
- Automatic color model initialization
- Language analyzis predictions

Introduction	Difficulties	Upper Body Model	Inference	Results	Conclusion

Questions ?